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P

INTRODUCTION

The field of analytical chemistry abounds with examples of data-

distribution analysis. Analytical chemists have utilized or studied it

in such diverse areas as the two-dimensional distribution of

electrochemical activity on graphite-epoxy electrodes (1), the sequence

distribution of ethylene-propylene copolymers using carbon-13 NUR and

Markovian statistics (2), the distribution of crystallographic structure s
factors in the course of making accurate measurements of crystal

structures (3-5), and even the distribution of components in empirical

mathematical models used in the study of the homogeneity of solids (6).

In large part, these distributions are derived from a proposed model for

a chemical or physical phenomenon; many times, the purpose of an

experiment is to compare an expected theoretical distribution of data to

some distribution of observations actually obtained in the laboratory.

In the end, the distributions are either shown to be identical, thus

verifying the theoretical model of the phenomenon, or they are shown to

be different in some way that suggests that a new and different model

more appropriately describes the data.

Often, the initial comparison of univariate populations involves

merely a visual inspection of the frequency distributions of each data

set, usually through the use of histograms (7), frequency polygons (8),

or stem-and-leaf (9) displays. Visual inspection is a very important

part of the process of distribution analysis because human beings possess

a remarkable ability to grasp visual oatterns and trends, even with very

little prior knowledge of what to expect in the data. Simple visual
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inspection can suggest among the data relationships that were previously

unexpected. Often, numerical restatements of the data actually tend to

have the opposite effect -- that is, numerical methods frequently conceal

important structures in data when the methods were not intentionally

designed to detect these structures.

The cumulative frequency distribution is often used in constructing

these graphical displays because of the ease with which it indicates the

number of values above or below a selected point or observation or,

conversely, the point which marks the beginning or end of a chosen

fraction of all random variables. This curve, which is just a plot of

the integral of the probability density function, is unfortunately often

too unwieldy for a simple visual analysis, and for this reason (as well S

as for others discussed later) its use is eschewed by many workers. What

would be most useful is a technique that retained the convenience of the

cumulative distribution function (CDF) in locating the boundaries of

specified areas, but that also transformed the data from a complex curve

with inflections into a more familiar linear form. This feature, in

fact, is the essence of the quantile-quantile plot.

The following review of distribution analysis outlines many

procedures that have been used in chemistry. The use of analysis by

distribution quantiles is also developed from basic principles of i

statistics. Finally, quantile analysis is shown to be more flexible than

typical numerical test procedures in representative applications to

chemical analysis.

-5- ,

S



The Nature of Quantile Analysis.

Quantile-quantile (QQ) plots are used to make detailed comparisons of

two collections of data. They are typically created by plotting the

empirical cumulative distribution function (ECDF), F(1), of one set of

data against the ECDF, F(2), of the other. The ECDF can be viewed
,V

graphically as n independent random variables, or observations,

represented as building blocks and stacked along a horizontal axis so

that their running sum forms an ever-increasing 'staircase' (see Figure

1). The steps in the staircase have a net height of 1/n over each

observation and the total height of the stairs ultimately reaches a value

of one (i.e., n/n) (10). The intersection of a horizontal line through a

given cumulative probability with a vertical line through the ordered

data gives a plotting position, or a quantile, for the QQ plot. This use

of the ECDF in a QQ plot does not necessarily depend upon any assumption

of a particular parametric distributional specification (for instance,

this sort of test need not assume that the empirical distribution is

Gaussian), and allows the QQ plot to be a powerful and flexible tool in

exploratory data analysis.

Quantile-quantile plots are commonly used to verify the

distributional properties of a set by comparing the set of observations

against a pre-specified 'model' distribution (i), and to obtain insight

into the nature of the 'true' distribution underlying the experimental

observations with respect to some reference distribution (i.e., the

actual observations have asymmetry, heavier tails, lighter tails, etc

when compared to some standard distribution). In a practical sense, this

-6-
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power is often exploited in the analysis of residuals from a modeling

process.

For example, if one wished to determine whether the Beer-Lambert Law

held for near-infrared diffuse reflectance spectrometry, one might

perform a linear fit on near-IR calibration-sample spectral data. A

linear fitting process like ordinary least-squares (OLS) regression

produces some sort of straight line regardless of how well the data

actually conform to the linear assumption, so some sort of analysis of

the goodness-of-fit must be undertaken. The correlation coefficient can

be calculated for the fit, of course, and this coefficient provides a

useful indication of how well the line actually describes the

observations. Using a single-valued statistic like the correlation

coefficient as a goodness-of-fit criterion, parameters of a prediction

model can be easily adjusted and the correlation coefficient recalculated

in order to obtain the best parameters for prediction of future values.

However, because the classical linear model is given by

y(i) = m(l)x(i,l) + ... + m(j)x(i,j) + e(i) (1)

(i =1, ... ,

where the error e(i) is usually assumed to follow the Gaussian

distribution with zero mean and unit variance, a more general fitting

method can profitably be employed. In this method the parameters are

adjusted until the e(i)'s become randomly distributed. This sort of

modeling procedure has become commonplace in the statistical literature;

in the case of the ordinary least-squares example, the procedure would be

applied to the set of near-IR observations using the linear model created

with the OLS technique to form a new set of observations, the residuals.

By definition of the general fitting method, a Qq plot of these residuals

-7-
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(on the ordinate) versus the quantiles of the Gaussian distribution (on

the abscissa) would then form a straight line of unit slope through the

origin if the linear model holds.

Many other nonparametric methods used to analyze residuals are

concerned only with the sign of the residual value, and treat it as

though only two values were possible. In contrast, quantile analysis

uses both the magnitude and sign of the residuals to determine whether

the residuals match a selected distribution; yet the method retains its

overall nonparametric character. This ability is of particular U

importance when robust or median-based fits (alternative fitting

procedures not based on a Gaussian minimization of the sum of the squares

of the residuals) are being employed. These robust procedures are

frequently employed when certain assumptions, required for ordinary

least-squares fitting to be valid, are not met. For example, one such

assumption is that the data points are normally distributed with constant

variance. If the OLS algorithm and one of these robust fitting

procedures are both applied to the same set of bivariate data, the

residuals from the model produced by the OLS algorithm will tend to

appear to be more normally distributed than the residuals from the robust

method. The relative absence of this 'masking effect' in robust

algorithms makes quantile analysis of their residuals even more important

because of the increased probability of extracting useful information p.

about the structure of the data from the distribution of the residuals.

The power of the QQ plotting procedure becomes especially evident when

one realizes that it is just as applicable to higher order, non-linear

modeling problems.

-8-
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Physicists have exploited the modeling capability of QQ plots in the

analysis of positron-annihilation angular correlation and Compton-profile

experiments (12). These experiments are used to study the electron

momentum distribution in materials, and the changes in the distribution

profiles often are quite small and near the level of statistical

uncertainty. In the past a one-parameter chi-square test has been used

in the comparison of data profiles, but this technique requires a good

estimate of the standard deviations of the distributions before it

produces meaningful results. Unfortunately, making a good estimate of

the standard deviation is sometimes impossible -- as when multiple

scattering effects are present in Compton-profile experiments. QQ

plotting procedures do not require a priori estimates of scale

parameters, and can be used to suggest changes in an inadequate model

rather than merely to reject it.

Suantile Theory

In order to understand better the power, flexibility, and utility of

quantile plotting, its theoretical development must be more closely

examined. Given two distribution functions, F(1) and F(2) (see Figure

2), a quantile plot can be formed by creating data pairs from abscissa

(Xi) values that are the p-th quantile of F(1), and ordinate (Yi) values

that are also the p-th quantile of F(2) (where p is the cumulative

probability -- one data pair is formed for each value of p on the

interval (0,1) ). Put simply, the QQ plot of F(1) against F(2) is a plot

of the Xi and Yi points corresponding to a particular limit of
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integration as that cumulative probability p is allowed to vary between I7

zero and one.

One could use a plot such as Figure 2 to compare an ECDF (F or F(1) ) S

to an actual CDF (F or F(2)). Naturally, as n increases, the ECDF

converges to the actual CDF of the process responsible for generating the

observations. In fact, plots such as Figure 2 have been used in actual

distribution comparisons of particle sizes obtained by turbidimetric

measurements (13) and in the estimation of distribution functions and

determination limits of ultraviolet-absorbing species in plant extracts S

(14). In the case of the turbidimetric measurements, light scattering by

a suspension of fine particles was used to determine the mean and range

of the particle diameters. It was assumed that this empirical

distribution could be fitted to an ordinary two-parameter log-normal

distribution function, and the parameters were estimated from the light-

scattering data obtained at two different wavelengths. The cumulative S

distribution plots gave results that were 'reasonably representative' of %

the central portion of the distributions.

The study of the distribution functions of ultraviolet-absorbing 4
substances in plant extracts (14) was performed using high-performance

liquid chromatography. The chromatograms of 62 plant-leaf extracts were

used as empirical distribution functions. A computer simulation was also

performed to estimate the true distribution functions of the absorbances

of observed peaks. These distributions were then used to assess tbe p."-

probability that a given plant constituent could be successfully

determined. %

In general, CDF plots such as Figure 2 test the location, shape, and

scale of the empirical distribution. To use such a plot to decide

-10- "AN
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whether or not a given set of variables follows a specified CDF, the

location and scale parameters of the distribution must first be

estimated. This estimation process can range from being a difficult

process to a nearly impossible one. Such was the situation in the case

cited earlier for Compton-profile experiments (12). In many cases,

neither the chi-square method nor the simple CDF method provides a

satisfactory solution to the distribution-analysis problem.

Another problem with simple CDF plots is that they often fail to

reveal significant variations in curves near p=O and p=l -- regions which

are often of critical concern. For instance, when one investigates

whether an ECDF is normal, the outliers are of major importance. If

outliers contaminate 10% of the data, then the regions between zero and

the fifth percentile and between the ninety-fifth and one hundredth

percentiles are of great interest. A plot that decompresses the data in

these regions possesses the greatest utility.

qq plots do not suffer from these data-compression and pa--ameter-

estimation problems. By obtaining quantiles from CDF plots and plotting

them versus each other (i.e., F-1(1)(p) on the y-axis and F-(2)(p) on

the x-axis) one can avoid these difficulties. 
The notation F-

1(p) simply

indicates the empirical inverse of the cumulative distribution function

given by the order statistics.

The probability plotting positions (p) are not chosen randomly to O,

give quantiles for plotting (21). Equations have been developed to give

the best positions for families of cumulative distribution functions.

The fact that ECDFs are discrete makes them necessarily somewhat

ambiguous. As a result, sampled ECDF points for simplicity are composed

of elements of the set of order statistics X (the rank-ordered

-11-1
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experimental data.) The corresponding points of the theoretical DF

(TCDF) are F-1 (p) where p = (i-0.5)/n (15) or some other cumulative

probability position (such as p = (i-0.4)/(n+0.2) (16)).

This quantile-selection procedure yields a straight line with unit
A

slope through the origin if F(1) is identical to F(2) (or if F is

identical to F). The reason for this linearity is simple: If two

functions (f(l) and f(2)) of x are identical, a plot of their integrals

(F(l) and F(2)) from negative-infinity to x, as x is allowed to vary

through the domains of the functions, will produce two identical vectors

of points (F(l),i and F(2),i). Plott'ng F(l),i versus F(2),i will give a

straight line. If F(1) differs from F(2) by only a location and/or scale

change, the plot will still be a straight line, but with a slope and

intercept that depend upon the values of the location (p) and scale (a)

changes. (Note that location and scale changes are normalized for

comparisons between CDFs by a simple relationship: If F(2)(x) =

F(1)((x-#)/a), the slope of the line formed will be a and the intercept

will be /a.)

If F(1) differs from F(2) in a more fundamental way, the QQ plot will

no longer be a straight line. Figure 3 shows some of the possible

patterns that can emerge. The plots given in Figure 3(a-f) assume that

the functions F(1) and F(2) are given by smooth curves, but this ]

assumption is merely for simplicity. The curves were generated by

creating distribution functions that show certain properties with respect

to the Gaussian distribution: right-skewed, left-skewed, light-tailed,

heavy-tailed, Gaussian but with different location and scale parameters,

and bimodal (the sum of two Gaussians). The random variables selected

for plott.ing were obtained throulh Monte Carlo integration of th

12
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probability density functions of both the created and Gaussian

distributions. The definition of a QQ plot is equally valid when F(1),

F(2), or both are step functions, like histograms.

Application of Quantile Analysis

The interpretation of patterns such as those in Figure 3 has been of

analytical interest in the field of biochemistry. A bimodal distribution

composed of two Gaussians gives a QQ plot to which two distinct straight

lines can be fitted (see Fig. 3f) -- this fact has been used to assign

Inormal-healthyl blood-glucose values in human test populations, and to

identify defective control of blood sugar (17). Similarly,

deoxyribonucleic acid (DNA) melting-point data have been plotted to allow

the mean content of guanine plus cytosine in DNA to be determined, and to

provide insight into the degree of variation from the mean in DNA-base

composition of fifteen different bacterial strains (18). In this

technique, a DNA sample is slowly heated until a sharp increase in

absorptivity is observed. The temperature at which this transformation

occurs si aals the double-stranded DNA helix breaking apart to form a

single-stranded random coil. The midpoint of the rise in absorptivity is S

called the thermal melting value, or T., and is directly proportional to

the sum of the guanine and cytosine present in the DNA sample. -

The ordinary method of making Tm determinations involves plotting

absorptivity versus temperature, and results in a plot resembling a CDF

plot, or simply the titration curve of a weak acid by a strong base. The

midpoint of the rise, T., can be found in a manner similar to that

13 S
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employed in locating the equivalence point in a routine titration-curve

analysis.

In contrast, the QQ plotting method for determining T. values is

based on the assumption that the compositional distribution of

nitrogenous bases in DNA is Gaussian. The "CDFO plot of absorptivity

versus temperature can be combined with the TCDF of the Gaussian

distribution to produce a QQ plot. If the distribution of bases is

indeed Gaussian, this fact will lead to the formation of a straight line

on the QQ plot and the Tm value will be obtainable from the fiftieth

percentile point (where f(O)=0.5). Not only is this procedure visually

easier than estimating an equivalence point, but it also requires fewer

data points (as few as four, according to Knittel (19)), permits a more

rapid determination of the standard deviation of TM and, by virtue of the

fact that QQ plots give a straight line for each component distribution,

makes it poss.ble for the melting procedure to reveal the presence of

minor components and impurities as well.

QQ plots can also be easily generated directly from histograms.

Figure 4 is the result of two multistep functions, one a theoretical CDF

approximating the Gaussian distribution and placed on the x-axis, and the

other, on the y-axis, an ECDF generated by a set of independent

observations following an 'unknown' distribution law that is asymmetric

and was created to have a mean of 14.6 and a standard deviation of 5.5.

This sort of plot is known as a normal probability plot, and it gives a

slope equal to the standard deviation of the ECDF and an intercept equal

to the mean. Normal probability plots have to date been the principal

application of QQ plotting procedures in analytical chemistry. Their use

-14-



has been most extensive in crystallography as a result of their early p

irtroduction to that field by Abrahams and Keve (20).

In Figure 4 the quantiles {q(p)) of the ECDF formed by the set of

independent observations x(l), x(2), ... , x(n) are plotted on the

ordinate of the QQ plot, and are given by

q(p) = x(i) for ((i-l)/n) < p <= i/n, (0 < i <= n-1) (2)

and

q(p) = x(n) for p = 1 (3)

where x(l), x(2), ..., x(n) represents the order statistics for the n

observations. The quantiles for p = l/n, 2/n, ... 1 are plotted because

the quantiles of the ECDF do not change as the cumulative probability

varies from (i-l)/n to i/n. The stair-like quality of Figure 4 arises

from the discontinuities introduced by the histograms, and it vanishes as

the number of increments, n, approaches infinity.

In practice, p = (i-0.5)/n is often used to give q(p) (the quantile L

for plotting) for the following reason: If the data are a random sample

from the distribution function F, the values of x(i) will by definition

tend to line up on y = x when the ECDF given by E(F)(x(i)) is plotted.

(Rh represents the expectation value of F.) This is because the plots are

based on the approximate relationship

E(F)(x(i)) = F-1L((i-0.5)/n). (4)

A simple calculation shows why such a basis is valid. Suppose n = 17 and

i = 9. The median (given by the order statistic X[(n+l)/2]) of the

sample is then x(9), so it is expected that one-half of the observations

will be below x(g). This corresponds to p = 1/2 because

(i-0.5)/n = 8.5/17 = 1/2. (5)

-15-
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Other plotting approaches, such as the more robust p (i-0.4)/(n+0.2),

give similar results on analysis:

p = (9-0.4)/(17+0.2) = 8.6/17.2 = 0.5 (6)

In contrast, (i-1)/n gives p=0.4 7 . The more robust plotting positions do

not change the appearance of the plot appreciably, but they do allow

robust goodness-of-fit test statistics to be calculated directly from the

plots (2I).

The straightforward relationship between p and the order statistics

suggests a simple way of analyzing QQ plots that appear similar to that

given in Figure 4, for example. In this method, one selects a quantile,

for example the fiftieth percentile of the Gaussian distribution on the

abscissa, which corresponds to x(i) = 0. The corresponding point on the

plot does not lie on the line y = x, but rather lies above it. This

particular p selection is further through the ECDF on the ordinate than

the same quantile of the TCDF on the abscissa, and indicates not only

that the ECDF is asymmetric, but also that it is 'heavier' in larger

values than the reference distribution.

Thomson scattering in the inductively coupled plasma (ICP) provides

one example that clearly demonstrates the ability of quantile analysis to

reveal important details about the shapes of data distributions. When

the plasma is irradiated by an external source, Thomson scatter is seen

as the Doppler shifting of radiation incident on the plasma by species

present in the plasma. Electrons exhibit the dominant Doppler shifts

because their low mass enables them to be accelerated to the highest

velocities; hence, Doppler shifts can be used to determine the electron

temperature of an ICP. Figure 5 shows the upper half of a hypothetical

Thomson-scattering experiment using an array of detectors to monitor the

-16-
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Doppler shifts of a laser pulse centered on channel 0. To describe it

simply, the faster the electrons in the plasma move, the higher the

electron temperature of the plasma is and the broader the bell-shaped

distribution of shifted radiation becomes. Unfortunately, other factors

also influence the shape of the shifted-radiation distribution. One such

factor is the scattering parameter a (21,22). When a=O the distribution

of the shifted radiation is Gaussian (see Figure 6).

The simplest method of determining the electron temperature from the

shifted radiation in the ICP Ilinearises' the Gaussian by taking the

logarithm of both sides of the Gaussian function. A plot of ln(signal)

vs. the square of the shift then gives a line whose slope can be used to

calculate the electron temperature. However, when a>O the 'linearized'

data show a nonlinear trend (see Figure 7) that causes a systematic error

in electron temperatures determined using this method.

Quantile analysis allows the shape of a curve to be determined

simultaneously with its scale. By using the r function in reference 22

as the TCDF and adjusting a until the line in the QQ plot is straight

(see Figure 8), the shape of the experimental curve can be determined by

matching it to the TCDF (the TCDF would be a member of the family of

curves shown in Figure 6). The scale ('standard deviation') can then be

estimated (relative to the TCDF) from the slope of the line in the QQ

plot.

Quantile plotting has been applied in our own laboratory to near-

infrared reflectance spectrometry. Near-IR spectrometry is a rapid

analytical technique that typically uses the diffuse reflectance of a

sample at several wavelengths to determine the sample's composition (23).

Through a computerized modeling process (generally employing multiple

-17-



linear regression), near-IR spectrometry is able to correct automatically

for background and sample-matrix interferences, making ordinarily

difficult analyses seem routine. This modeling process employs a S

'training set' of samples to, in effect, 'teach* the computer to

recognize relationships between minute spectral features and sample

composition. Of course, the training set must have been previously

analyzed by some other reliable (reference) chemical procedure.

The near-IR calibration model that is developed is composed of linear

equations that relate sample composition to the weighted sum of the

reflectances at monitored wavelengths. Unfortunately, any amount of

reflectance at the selected analytical wavelengths generates a

corresponding composition value, regardless of the material responsible

for the reflection. In other words, when a sample contains a component

that was not present in the training set, or when the sample in any other

way (such as its particle size distribution) lies outside of the 'domain'

of the training set, erroneous composition values can result without any

indication of the error.

One cure for this problem would be to find a method of identifying

'strange' samples using only their near-infrared spectra, and indeed,

such a method exists (24). The use of such a method allows different

models to be applied in the determination of the compositions of

different samples. This identification method collects reflectance data

at n wavelengths, and represents each wavelength as a particular spatial

dimension. A sample spectrum taken at n wavelengths can then be

represented as a single point in an n-dimensional space. The point is

translated from the origin by amounts that correspond to the magnitude of

reflectance observed at each wavelength. A group of similar samples with

-18-



similar spectra appears as a cluster of points at a given lonation in

space (see Figure 9).

In our laboratory we have investigated the behavior of these points

and clusters in hyperspace using quantile analysis. The analyzed

distribution (the ECDF) is that of the density of points in a given

direction from the center of a cluster, because the clusters themselves

are multidimensional and QQ plots can plot only one univariate

distribution versus another. Quantiles are used to set confidence limits

around the clusters by plotting density in a given direction. Figure 10

shows a quantile plot of the clusters in Figure 9. This plot was

generated along a line (shown in Figure 9) connecting the centers of the

two clusters. The slopes and intercepts of the two lines in this QQ plot

define equations for the point-probability density in the direction

through the two cluster centers. With this information points can be

assigned to a cluster, effectively allowing unknowns to be identified

from their near-I spectra. This method permits samples to be pre-

screened before quantitation to assure that the proper linear model is

chosen for the measurement process (25).

CONCLUSIONS

Distribution analysis using qQ plots, unlike basic CDF plots, is

robust because judging whether the data points lie on a straight line

(and therefore come from a specified parameterized family) is insensitive

to the location and scale of the data. Examination of the plots in

Figures 3 and 4 show that QQ plots are capable of making the tails of

VC C



distributions more visible. Finally, distribution analysis using QQ

plots is more powerful than the classical statistical approach that:

1. proposes a null hypothesis that the distributions are identical;

2. calculates a suitable test statistic from the data (whose

distribution is known only if the null hypothesis is true), and

3. fails to accept the null hypothesis if the value of the test

statistic falls outside of a certain range based upon a previously

selected significance level. 0

If the classical approach fails to accept the null hypothesis, no real

indication of what happened is given and little information is available

regarding how best to proceed. Even if the null hypothesis holds, there

is no real guarantee that the distributions actually match; each test

statistic is sensitive only to certain types of departures from the t

proposed distribution. In addition, many real cases are borderline, and

if a different arbitrary significance level had been selected, the

opposite answer would have been obtained.

Quantile plots give a great deal of information about distributions.

In a single plot, they can isolate the first three moments of a set of .

observations: the location, the scale, and the direction of any skew.

This information can be analyzed by curve-fitting, modeling, and pattern-

recognition techniques. The flexibility of the QQ plotting procedure

makes it an obvious first choice in the exploratory analysis of

distributions.
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FIGURE CAPTIONS

Figure 1. Constructing an ECDF. The blocks represent observations.

As the number of observations increases, the rough empirical function, F,

approaches the smooth TCDF, F. Order statistics are the rank-ordered

observations, from lowest to highest.

Figure 2. Forming quantiles for plotting from CDFs. Formulas S

determine a series of p values to use as plotting positions, or quantiles

{ q(p) or (Xi,Yi) }. Each p gives a pair of order statistics to use as a

point in a QQ plot.

Figure 3. Normal probability plots of synthetic inverse Gaussian

spline functions us. the standard inverse Gaussian function, 0-1(x). The

standard Gaussian is on the abscissa. The plots have probability axes.

The best straight line through each has an intercept equal to the mean

and a slope equal to the standard deviation of the ECDF on the ordinate.

Figure 3a. Right-skewed. The pattern shows a distribution on the

ordinate that is initially "heavier' in observations than the reference

standard Gaussian.

Figure 3b. Left-skewed. This situation can be thought of as the

reverse of 3a. Left skew indicates that the lower observations are

exhibiting a leverage effect on the mean of the data distribution.
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Figure 3c. Heavy-tailed. This situation can be viewed as being both

right-skewed and left-skewed.

Figure 3d. Light-tailed. This situation can be thought of as a

truncation of the right and left tails of the data distribution. This

case is the inverse of the heavy-tailed case.

Figure 3e. Gaussian with different location and scale. The ECDF

Gaussian has a mean and variance of 4. The best straight line through

these points therefore has a slope of 2 and an intercept of 4. The

relative straightness of the line indicates that no skew is present in

the empirical data.

Figure 3f. Bimodal (two unresolved Gaussians). Two distinct lines

can be fit to these data. The slopes and intercepts of the two lines

define the two Gaussian curves shown in the inset.

Figure 4. Normal probability plot of histograms. The lack of

smoothness, or the 'stair-like' quality to the plot, is due to the use of

histograms for the standard Gaussian on the abscissa and the ECDF on the

ordinate.

Figure 5. The upper half of a hypothetical Thomson-scattering I
profile. Signal intensity on the ordinate is given in terms of photon

counts, and the wavelength shift on the abscissa is scaled to detector

array elements. The shape of the distribution is Gaussian.
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Figure 6. Theoretical Thomson--scattering profiles corresponding to

a=O (solid line), a=0.4 (dotted line), a=0.8 (dot-dashed line), a=l.2

(short-dashed line), and a=l.6 (long dr'hed line). The shift function is S
.

r from reference 22.

Figure 7. The effect of atteapving to linearize the Thomson-
scattering profile when a-0.8 (solid line) and a=l.6 (dashed line).

Calculations based on liocar fits to these lines produce biased electron

temperatures.

Figure 8. A QI plot of the datl in Figure 5 (on the ordinate) vs.

the shift function I' (on the abscissa) wh,n aecd --- atdf.

Figure 9. Two Clusters, A and 13, represent hypothetical spectral

reflectance data collected at the two wavelengths, I and 2, for compounds

A and B.

Figure 10. A quantile plot of clusters in Figure 5, takca along a

line connecting the centers of A and B. The inset shows a histogram of

these clusters, taken along the same line.
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